{ "id": "1407.3589", "version": "v2", "published": "2014-07-14T10:13:53.000Z", "updated": "2014-12-10T09:34:26.000Z", "title": "Bad reduction of genus $3$ curves with complex multiplication", "authors": [ "Irene Bouw", "Jenny Cooley", "Kristin Lauter", "Elisa Lorenzo Garcia", "Michelle Manes", "Rachel Newton", "Ekin Ozman" ], "categories": [ "math.NT", "math.AG" ], "abstract": "Let $C$ be a smooth, absolutely irreducible genus-$3$ curve over a number field $M$. Suppose that the Jacobian of $C$ has complex multiplication by a sextic CM-field $K$. Suppose further that $K$ contains no imaginary quadratic subfield. We give a bound on the primes $\\mathfrak{p}$ of $M$ such that the stable reduction of $C$ at $\\mathfrak{p}$ contains three irreducible components of genus $1$.", "revisions": [ { "version": "v1", "updated": "2014-07-14T10:13:53.000Z", "title": "Bad reduction of genus-$3$ curves with complex multiplication", "comment": null, "journal": null, "doi": null, "authors": [ "Irene Bouw", "Jenny Cooley", "Kristin Lauter", "Elisa Lorenzo Garcia", "Michella Manes", "Rachel Newton", "Ekin Ozman" ] }, { "version": "v2", "updated": "2014-12-10T09:34:26.000Z" } ], "analyses": { "subjects": [ "11G15", "14K22", "15B33" ], "keywords": [ "complex multiplication", "bad reduction", "imaginary quadratic subfield", "number field", "sextic cm-field" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.3589B" } } }