{ "id": "1407.3261", "version": "v2", "published": "2014-07-11T19:45:31.000Z", "updated": "2014-08-06T02:38:42.000Z", "title": "Proof of a conjecture of Guy on class numbers", "authors": [ "Lynn Chua", "Benjamin Gunby", "Soohyun Park", "Allen Yuan" ], "comment": "9 pages; additional background given in introduction concerning $h(p)$ and $h(-p)$ modulo small powers of 2", "categories": [ "math.NT" ], "abstract": "It is well known that for any prime $p\\equiv 3$ (mod $4$), the class numbers of the quadratic fields $\\mathbb{Q}(\\sqrt{p})$ and $\\mathbb{Q}(\\sqrt{-p})$, $h(p)$ and $h(-p)$ respectively, are odd. It is natural to ask whether there is a formula for $h(p)/h(-p)$ modulo powers of $2$. We show the formula $h(p) \\equiv h(-p) m(p)$ (mod $16$), where $m(p)$ is an integer defined using the \"negative\" continued fraction expansion of $\\sqrt{p}$. Our result solves a conjecture of Richard Guy.", "revisions": [ { "version": "v2", "updated": "2014-08-06T02:38:42.000Z" } ], "analyses": { "subjects": [ "11R29" ], "keywords": [ "class numbers", "conjecture", "continued fraction expansion", "quadratic fields", "modulo powers" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.3261C" } } }