{ "id": "1407.2691", "version": "v1", "published": "2014-07-10T04:54:38.000Z", "updated": "2014-07-10T04:54:38.000Z", "title": "Top-stable degenerations of finite dimensional representations II", "authors": [ "H. Derksen", "B. Huisgen-Zimmermann", "J. Weyman" ], "journal": "Advances in Math. 259 (2014) 730-765", "categories": [ "math.RT", "math.RA" ], "abstract": "Let $\\Lambda$ be a finite dimensional algebra over an algebraically closed field. We exhibit slices of the representation theory of $\\Lambda$ that are always classifiable in stringent geometric terms. Namely, we prove that, for any semisimple object $T \\in \\Lambda\\text{-mod}$, the class of those $\\Lambda$-modules with fixed dimension vector (say $\\bf d$) and top $T$ which do not permit any proper top-stable degenerations possesses a fine moduli space. This moduli space, $\\mathfrak{ModuliMax}^T_{\\bf d}$, is a projective variety. Despite classifiability up to isomorphism, the targeted collections of modules are representation-theoretically rich: indeed, any projective variety arises as $\\mathfrak{ModuliMax}^T_{\\bf d}$ for suitable choices of $\\Lambda$, $\\bf d$, and $T$. In tandem, we give a structural characterization of the finite dimensional representations that have no proper top-stable degenerations.", "revisions": [ { "version": "v1", "updated": "2014-07-10T04:54:38.000Z" } ], "analyses": { "subjects": [ "16G10", "14D20", "16D70", "16G20" ], "keywords": [ "finite dimensional representations", "proper top-stable degenerations possesses", "stringent geometric terms", "fine moduli space", "finite dimensional algebra" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier", "journal": "Adv. Math." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.2691D" } } }