{ "id": "1407.2326", "version": "v1", "published": "2014-07-09T00:53:12.000Z", "updated": "2014-07-09T00:53:12.000Z", "title": "A Homological Bridge Between Finite and Infinite Dimensional Representations of Algebras", "authors": [ "B. Huisgen-Zimmermann", "S. O. Smalø" ], "journal": "Algebras and Representation Theory 1 (1998) 169-188", "categories": [ "math.RT", "math.RA" ], "abstract": "Given a finite dimensional algebra $\\Lambda$, we show that a frequently satisfied finiteness condition for the category ${\\cal P}^{\\infty}(\\Lambda\\rm{-mod})$ of all finitely generated (left) $\\Lambda$-modules of finite projective dimension, namely contravariant finiteness of ${\\cal P}^{\\infty}(\\Lambda\\rm{-mod})$ in $\\Lambda\\rm{-mod}$, forces arbitrary modules of finite projective dimension to be direct limits of objects in ${\\cal P}^{\\infty}(\\Lambda\\rm{-mod})$. Among numerous applications, this yields an encompassing sufficient condition for the validity of the first finitistic dimension conjecture, that is, for the little finitistic dimension of $\\Lambda$ to coincide with the big (this is well-known to fail over finite dimensional algebras in general).", "revisions": [ { "version": "v1", "updated": "2014-07-09T00:53:12.000Z" } ], "analyses": { "subjects": [ "16E10", "16D90", "16G10" ], "keywords": [ "infinite dimensional representations", "homological bridge", "finite dimensional algebra", "finite projective dimension", "first finitistic dimension conjecture" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Represent. Theory" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.2326H" } } }