{ "id": "1407.2094", "version": "v1", "published": "2014-07-08T14:09:15.000Z", "updated": "2014-07-08T14:09:15.000Z", "title": "On the star discrepancy of sequences in the unit interval", "authors": [ "Gerhard Larcher" ], "comment": "13 pages, 10 figures", "categories": [ "math.NT" ], "abstract": "It is known that there is a constant $c > 0$ such that for every sequence $x_1, x_2, \\ldots$ in $[0,1)$ we have for the star discrepancy $D_N^*$ of the first $N$ elements of the sequence that $N D_N^* \\ge c \\cdot \\log N$ holds for infinitely many $N$. Let $c^*$ be the supremum of all such $c$ with this property. We show $c^* > 0.0646363$, thereby improving the until now known estimates.", "revisions": [ { "version": "v1", "updated": "2014-07-08T14:09:15.000Z" } ], "analyses": { "subjects": [ "11K38" ], "keywords": [ "star discrepancy", "unit interval" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.2094L" } } }