{ "id": "1407.2015", "version": "v1", "published": "2014-07-08T09:49:40.000Z", "updated": "2014-07-08T09:49:40.000Z", "title": "Symmetric polyomino tilings, tribones, ideals, and Groebner bases", "authors": [ "Manuela Muzika Dizdarevic", "Rade T. Zivaljevic" ], "categories": [ "math.CO" ], "abstract": "We apply the theory of Groebner bases to the study of signed, symmetric polyomino tilings of planar domains. Complementing the results of Conway and Lagarias we show that the triangular regions T_N=T_{3k-1} and T_N=T_{3k} in a hexagonal lattice admit a signed tiling by three-in-line polyominoes (tribones) symmetric with respect to the 120 degrees rotation of the triangle if and only if either N=27r-1 or N=27r for some integer r.", "revisions": [ { "version": "v1", "updated": "2014-07-08T09:49:40.000Z" } ], "analyses": { "subjects": [ "05B45" ], "keywords": [ "symmetric polyomino tilings", "groebner bases", "hexagonal lattice admit", "degrees rotation", "triangular regions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.2015M" } } }