{ "id": "1407.1683", "version": "v1", "published": "2014-07-07T12:27:16.000Z", "updated": "2014-07-07T12:27:16.000Z", "title": "A note on the compactness theorem for 4d Ricci shrinkers", "authors": [ "Robert Haslhofer", "Reto Müller" ], "categories": [ "math.DG" ], "abstract": "In arXiv:1005.3255 we proved an orbifold Cheeger-Gromov compactness theorem for complete 4d Ricci shrinkers with a lower bound for the entropy, an upper bound for the Euler characterisic, and a lower bound for the gradient of the potential at large distances. In this note, we show that the last two assumptions in fact can be removed. The key ingredient is a recent estimate of Cheeger-Naber arXiv:1406.6534.", "revisions": [ { "version": "v1", "updated": "2014-07-07T12:27:16.000Z" } ], "analyses": { "keywords": [ "lower bound", "complete 4d ricci shrinkers", "orbifold cheeger-gromov compactness theorem", "large distances", "euler characterisic" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.1683H" } } }