{ "id": "1407.1577", "version": "v2", "published": "2014-07-07T04:21:25.000Z", "updated": "2014-11-11T05:20:02.000Z", "title": "Benford's Law for Coefficients of Newforms", "authors": [ "Marie Jameson", "Jesse Thorner", "Lynnelle Ye" ], "comment": "10 pages. Referee comments implemented. To appear in International Journal of Number Theory", "categories": [ "math.NT" ], "abstract": "Let $f(z)=\\sum_{n=1}^\\infty \\lambda_f(n)e^{2\\pi i n z}\\in S_{k}^{new}(\\Gamma_0(N))$ be a normalized Hecke eigenform of even weight $k\\geq2$ on $\\Gamma_0(N)$ without complex multiplication. Let $\\mathbb{P}$ denote the set of all primes. We prove that the sequence $\\{\\lambda_f(p)\\}_{p\\in\\mathbb{P}}$ does not satisfy Benford's Law in any base $b\\geq2$. However, given a base $b\\geq2$ and a string of digits $S$ in base $b$, the set \\[ A_{\\lambda_f}(b,S):=\\{\\text{$p$ prime : the first digits of $\\lambda_f(p)$ in base $b$ are given by $S$}\\} \\] has logarithmic density equal to $\\log_b(1+S^{-1})$. Thus $\\{\\lambda_f(p)\\}_{p\\in\\mathbb{P}}$ follows Benford's Law with respect to logarithmic density. Both results rely on the now-proven Sato-Tate Conjecture.", "revisions": [ { "version": "v1", "updated": "2014-07-07T04:21:25.000Z", "comment": "10 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-11-11T05:20:02.000Z" } ], "analyses": { "subjects": [ "11F30", "11K06", "11B83" ], "keywords": [ "coefficients", "satisfy benfords law", "now-proven sato-tate conjecture", "logarithmic density equal", "first digits" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.1577J" } } }