{ "id": "1407.1157", "version": "v1", "published": "2014-07-04T09:08:58.000Z", "updated": "2014-07-04T09:08:58.000Z", "title": "On the rate of convergence of empirical measures in $\\infty$-transportation distance", "authors": [ "Nicolás García Trillos", "Dejan Slepčev" ], "categories": [ "math.PR", "math.FA" ], "abstract": "We consider random i.i.d. samples of absolutely continuous measures on bounded connected domains. We prove an upper bound on the $\\infty$-transportation distance between the measure and the empirical measure of the sample. The bound is optimal in terms of scaling with the number of sample points.", "revisions": [ { "version": "v1", "updated": "2014-07-04T09:08:58.000Z" } ], "analyses": { "subjects": [ "60B10", "60D05", "05C70" ], "keywords": [ "transportation distance", "empirical measure", "convergence", "sample points", "upper bound" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.1157G" } } }