{ "id": "1407.0967", "version": "v5", "published": "2014-07-03T15:58:17.000Z", "updated": "2014-12-23T17:58:39.000Z", "title": "Congruences involving $g_n(x)=\\sum_{k=0}^n\\binom nk^2\\binom{2k}kx^k$", "authors": [ "Zhi-Wei Sun" ], "comment": "23 pages. Refined version. Th. 2.4 is new", "categories": [ "math.NT", "math.CO" ], "abstract": "Define $g_n(x)=\\sum_{k=0}^n\\binom nk^2\\binom{2k}kx^k$ for $n=0,1,2,\\ldots$. Those numbers $g_n=g_n(1)$ are closely related to Ap\\'ery numbers and Franel numbers. In this paper we establish some fundamental congruences involving $g_n(x)$. For example, for any prime $p>5$ we have $$\\sum_{k=1}^{p-1}\\frac{g_k(-1)}{k}\\equiv 0\\pmod{p^2}\\quad\\mbox{and}\\quad\\sum_{k=1}^{p-1}\\frac{g_k(-1)}{k^2}\\equiv 0\\pmod p.$$ This is similar to Wolstenholme's classical congruences $$\\sum_{k=1}^{p-1}\\frac1k\\equiv0\\pmod{p^2}\\quad\\mbox{and}\\quad\\sum_{k=1}^{p-1}\\frac{1}{k^2}\\equiv0\\pmod p$$ for any prime $p>3$.", "revisions": [ { "version": "v4", "updated": "2014-07-23T19:58:50.000Z", "abstract": "Define $g_n(x)=\\sum_{k=0}^n\\binom nk^2\\binom{2k}kx^k$ for $n=0,1,2,\\ldots$. Those numbers $g_n=g_n(1)$ are closely related to Ap\\'ery numbers and Franel numbers. In this paper we establish some fundamental congruences involving $g_n(x)$. For example, for any prime $p>3$ we have $$\\sum_{k=1}^{p-1}g_k\\equiv0\\pmod{p^2}\\quad\\mbox{and}\\quad\\sum_{k=1}^{p-1}kg_k\\equiv -\\frac 34\\pmod{p^2}.$$ We also show the congruences $$\\sum_{k=1}^{p-1}\\frac{g_k(-1)}k\\equiv 0\\pmod{p^2}\\quad\\mbox{and}\\quad\\sum_{k=1}^{p-1}\\frac{g_k(-1)}{k^2}\\equiv 0\\pmod p$$ for any prime $p>5$.", "comment": "24 pages. Th. 2.1 is new", "journal": null, "doi": null }, { "version": "v5", "updated": "2014-12-23T17:58:39.000Z" } ], "analyses": { "subjects": [ "11A07", "11B65", "05A10", "05A30", "11B75" ], "keywords": [ "fundamental congruences", "apery numbers", "franel numbers" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.0967S" } } }