{ "id": "1407.0864", "version": "v1", "published": "2014-07-03T11:01:35.000Z", "updated": "2014-07-03T11:01:35.000Z", "title": "Monotonicity of the first Dirichlet eigenvalue of the Laplacian on manifolds of nonpositive curvature", "authors": [ "Tom Carroll", "Jesse Ratzkin" ], "comment": "18 pages", "categories": [ "math.AP" ], "abstract": "Let $(M,g)$ be a complete manifold of nonpositive scalar curvature, let $\\Omega\\subset M$ be a suitable domain, and let $\\lambda(\\Omega)$ be the first Dirichlet eigenvalue of the Laplace-Beltrami operator on $\\Omega$. We prove several bounds for the rate of decrease of $\\lambda(\\Omega)$ and $\\Omega$ increases, and a result comparing the rate of decrease of $\\lambda$ before and after a conformal diffeomorphism. Along the way, we prove a reverse-Holder inequality for the first eigenfunction, which generalizes results of Chiti to the monifold setting and may be of independent interest", "revisions": [ { "version": "v1", "updated": "2014-07-03T11:01:35.000Z" } ], "analyses": { "subjects": [ "35P15" ], "keywords": [ "first dirichlet eigenvalue", "nonpositive curvature", "monotonicity", "complete manifold", "generalizes results" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.0864C" } } }