{ "id": "1407.0776", "version": "v2", "published": "2014-07-03T04:25:27.000Z", "updated": "2014-07-15T10:01:05.000Z", "title": "On the Hausdorff dimension of some sets of numbers defined through the digits of their $Q$-Cantor series expansions", "authors": [ "Dylan Airey", "Bill Mance" ], "comment": "13 pages, 1 figure", "categories": [ "math.NT" ], "abstract": "Following in the footsteps of P. Erd\\H{o}s and A. R\\'enyi we compute the Hausdorff dimension of sets of numbers whose digits with respect to their $Q$-Cantor series expansions satisfy various statistical properties. In particular, we consider difference sets associated with various notions of normality and sets of numbers with a prescribed range of digits.", "revisions": [ { "version": "v2", "updated": "2014-07-15T10:01:05.000Z" } ], "analyses": { "keywords": [ "hausdorff dimension", "cantor series expansions satisfy", "difference sets", "statistical properties" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.0776A" } } }