{ "id": "1407.0630", "version": "v2", "published": "2014-07-02T16:14:52.000Z", "updated": "2014-10-01T11:04:38.000Z", "title": "Scattering theory of the Hodge-Laplacian under a conformal perturbation", "authors": [ "Francesco Bei", "Batu Güneysu", "Jörn Müller" ], "comment": "Some typos corrected", "categories": [ "math.DG", "math-ph", "math.FA", "math.MP" ], "abstract": "Let $g$ and $\\tilde{g}$ be Riemannian metrics on a noncompact manifold $M$, which are conformally equivalent. We show that under a very mild \\emph{first order} control on the conformal factor, the wave operators corresponding the Hodge-Laplacian $\\Delta_g$ and $\\Delta_{\\tilde{g}}$ acting on differential forms exist and are complete.", "revisions": [ { "version": "v1", "updated": "2014-07-02T16:14:52.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2014-10-01T11:04:38.000Z" } ], "analyses": { "keywords": [ "conformal perturbation", "scattering theory", "hodge-laplacian", "riemannian metrics", "noncompact manifold" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.0630B" } } }