{ "id": "1406.7681", "version": "v2", "published": "2014-06-30T11:40:51.000Z", "updated": "2015-02-10T10:15:10.000Z", "title": "A nonexistence result for sign-changing solutions of the Brezis-Nirenberg problem in low dimensions", "authors": [ "Alessandro Iacopetti", "Filomena Pacella" ], "comment": "21 pages", "categories": [ "math.AP" ], "abstract": "We consider the Brezis-Nirenberg problem: \\begin{equation*} \\begin{cases} -\\Delta u = \\lambda u + |u|^{2^* -2}u & \\hbox{in}\\ \\Omega\\\\ u=0 & \\hbox{on}\\ \\partial \\Omega, \\end{cases} \\end{equation*} where $\\Omega$ is a smooth bounded domain in $\\mathbb{R}^N$, $N\\geq 3$, $2^{*}=\\frac{2N}{N-2}$ is the critical Sobolev exponent and $\\lambda>0$ a positive parameter. The main result of the paper shows that if $N=4,5,6$ and $\\lambda$ is close to zero there are no sign-changing solutions of the form $$u_\\lambda=PU_{\\delta_1,\\xi}-PU_{\\delta_2,\\xi}+w_\\lambda, $$ where $PU_{\\delta_i}$ is the projection on $H_0^1(\\Omega)$ of the regular positive solution of the critical problem in $\\mathbb{R}^N$, centered at a point $\\xi \\in \\Omega$ and $w_\\lambda$ is a remainder term. Some additional results on norm estimates of $w_\\lambda$ and about the concentrations speeds of tower of bubbles in higher dimensions are also presented.", "revisions": [ { "version": "v1", "updated": "2014-06-30T11:40:51.000Z", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-02-10T10:15:10.000Z" } ], "analyses": { "keywords": [ "brezis-nirenberg problem", "sign-changing solutions", "nonexistence result", "low dimensions", "smooth bounded domain" ], "publication": { "doi": "10.1016/j.jde.2015.01.030", "journal": "Journal of Differential Equations", "year": 2015, "month": "Jun", "volume": 258, "number": 12, "pages": 4180 }, "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015JDE...258.4180I" } } }