{ "id": "1406.7502", "version": "v2", "published": "2014-06-29T13:11:49.000Z", "updated": "2014-08-22T05:43:29.000Z", "title": "Derived equivalences for Rational Cherednik algebras", "authors": [ "Ivan Losev" ], "comment": "32 pages, preliminary version; v2 33 pages some proofs rewritten", "categories": [ "math.RT" ], "abstract": "Let W be a complex reflection group and H_c(W) the Rational Cherednik algebra for $W$ depending on a parameter c. One can consider the category O for H_c(W). We prove a conjecture of Rouquier that the categories O for H_c(W) and H_{c'}(W) are derived equivalent provided the parameters c,c' have integral difference. Two main ingredients of the proof are a connection between the Ringel duality and Harish-Chandra bimodules and an analog of a deformation technique developed by the author and Bezrukavnikov. We also show that some of the derived equivalences we construct are perverse.", "revisions": [ { "version": "v1", "updated": "2014-06-29T13:11:49.000Z", "comment": "32 pages, preliminary version", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-08-22T05:43:29.000Z" } ], "analyses": { "subjects": [ "16E99", "16G99" ], "keywords": [ "rational cherednik algebra", "derived equivalences", "complex reflection group", "ringel duality", "deformation technique" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.7502L" } } }