{ "id": "1406.7453", "version": "v2", "published": "2014-06-29T01:33:32.000Z", "updated": "2015-08-19T20:06:37.000Z", "title": "The (2k-1)-connected multigraphs with at most k-1 disjoint cycles", "authors": [ "H. A. Kierstead", "A. V. Kostochka", "E. C. Yeager" ], "comment": "7 pages, 2 figures. To appear in Combinatorica", "doi": "10.1007/s00493-015-3291-8", "categories": [ "math.CO" ], "abstract": "In 1963, Corr\\'adi and Hajnal proved that for all $k \\ge 1$ and $n \\ge 3k$, every (simple) graph on n vertices with minimum degree at least 2k contains k disjoint cycles. The same year, Dirac described the 3-connected multigraphs not containing two disjoint cycles and asked the more general question: Which (2k-1)-connected multigraphs do not contain k disjoint cycles? Recently, the authors characterized the simple graphs G with minimum degree $\\delta(G) \\ge 2k-1$ that do not contain k disjoint cycles. We use this result to answer Dirac's question in full.", "revisions": [ { "version": "v1", "updated": "2014-06-29T01:33:32.000Z", "comment": "7 pages, 2 figures", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-08-19T20:06:37.000Z" } ], "analyses": { "subjects": [ "05C15", "05C35", "05C40" ], "keywords": [ "disjoint cycles", "multigraphs", "minimum degree", "answer diracs question", "simple graphs" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer" }, "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.7453K" } } }