{ "id": "1406.7406", "version": "v2", "published": "2014-06-28T14:23:51.000Z", "updated": "2014-10-09T20:08:48.000Z", "title": "Fractional semilinear Neumann problems arising from a fractional Keller--Segel model", "authors": [ "P. R. Stinga", "B. Volzone" ], "comment": "28 pages", "categories": [ "math.AP", "math.CA" ], "abstract": "We consider the following fractional semilinear Neumann problem on a connected smooth bounded domain $\\Omega\\subset\\mathbb{R}^n$, $n\\geq2$, $$\\begin{cases} (-\\varepsilon\\Delta)^{1/2}u+u=u^p,&\\hbox{in}~\\Omega,\\\\ \\partial_\\nu u=0,&\\hbox{on}~\\partial\\Omega,\\\\ u>0,&\\hbox{in}~\\Omega, \\end{cases}$$ where $\\varepsilon>0$ and $1