{ "id": "1406.6824", "version": "v1", "published": "2014-06-26T09:44:17.000Z", "updated": "2014-06-26T09:44:17.000Z", "title": "Existence of minimizers for eigenvalues of the Dirichlet-Laplacian with a drift", "authors": [ "Barbara Brandolini", "Francesco Chiacchio", "Antoine Henrot", "Cristina Trombetti" ], "categories": [ "math.AP" ], "abstract": "This paper deals with the eigenvalue problem for the operator $L=-\\Delta -x\\cdot \\nabla $ with Dirichlet boundary conditions. We are interested in proving the existence of a set minimizing any eigenvalue $\\lambda_k$ of $L$ under a suitable measure constraint suggested by the structure of the operator. More precisely we prove that for any $c>0$ and $k\\in \\mathbb{N} $ the following minimization problem $$ \\min\\left\\{\\lambda_k(\\Omega): \\> \\Omega \\>\\mbox{quasi-open} \\>\\mbox{set}, \\> \\int_\\Omega e^{|x|^2/2}dx\\le c\\right\\} $$ has a solution.", "revisions": [ { "version": "v1", "updated": "2014-06-26T09:44:17.000Z" } ], "analyses": { "subjects": [ "35J45", "35P05", "49G05" ], "keywords": [ "dirichlet-laplacian", "minimizers", "dirichlet boundary conditions", "eigenvalue problem", "paper deals" ], "publication": { "doi": "10.1016/j.jde.2015.02.028", "journal": "Journal of Differential Equations", "year": 2015, "month": "Jul", "volume": 259, "number": 2, "pages": 708 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015JDE...259..708B" } } }