{ "id": "1406.6712", "version": "v2", "published": "2014-06-25T20:36:44.000Z", "updated": "2015-06-19T12:57:30.000Z", "title": "Stability of low-rank matrix recovery and its connections to Banach space geometry", "authors": [ "Javier Alejandro Chávez-Domínguez", "Denka Kutzarova" ], "comment": "16 pages", "journal": "J. Math. Anal. Appl. 427 (2015), no. 1, 320--335", "doi": "10.1016/j.jmaa.2015.02.041", "categories": [ "math.FA", "cs.IT", "math.IT" ], "abstract": "There are well-known relationships between compressed sensing and the geometry of the finite-dimensional $\\ell_p$ spaces. A result of Kashin and Temlyakov can be described as a characterization of the stability of the recovery of sparse vectors via $\\ell_1$-minimization in terms of the Gelfand widths of certain identity mappings between finite-dimensional $\\ell_1$ and $\\ell_2$ spaces, whereas a more recent result of Foucart, Pajor, Rauhut and Ullrich proves an analogous relationship even for $\\ell_p$ spaces with $p < 1$. In this paper we prove what we call matrix or noncommutative versions of these results: we characterize the stability of low-rank matrix recovery via Schatten $p$-(quasi-)norm minimization in terms of the Gelfand widths of certain identity mappings between finite-dimensional Schatten $p$-spaces.", "revisions": [ { "version": "v1", "updated": "2014-06-25T20:36:44.000Z", "comment": "19 pages, 1 figure", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-06-19T12:57:30.000Z" } ], "analyses": { "keywords": [ "low-rank matrix recovery", "banach space geometry", "connections", "identity mappings", "gelfand widths" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.6712A" } } }