{ "id": "1406.6526", "version": "v2", "published": "2014-06-25T11:25:33.000Z", "updated": "2015-02-10T04:01:10.000Z", "title": "Cameron-Liebler line classes with parameter $x=\\frac{q^2-1}{2}$", "authors": [ "Tao Feng", "Koji Momihara", "Qing Xiang" ], "comment": "22 pages, reviced version", "categories": [ "math.CO" ], "abstract": "In this paper, we give an algebraic construction of a new infinite family of Cameron-Liebler line classes with parameter $x=\\frac{q^2-1}{2}$ for $q\\equiv 5$ or $9\\pmod{12}$, which generalizes the examples found by Rodgers in \\cite{rodgers} through a computer search. Furthermore, in the case where $q$ is an even power of $3$, we construct the first infinite family of affine two-intersection sets in $\\mathrm{AG}(2,q)$.", "revisions": [ { "version": "v1", "updated": "2014-06-25T11:25:33.000Z", "comment": "22 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-02-10T04:01:10.000Z" } ], "analyses": { "subjects": [ "05B25", "11T24", "05E30" ], "keywords": [ "cameron-liebler line classes", "affine two-intersection sets", "algebraic construction", "computer search", "first infinite family" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.6526F" } } }