{ "id": "1406.6242", "version": "v2", "published": "2014-06-24T14:09:11.000Z", "updated": "2016-01-03T20:10:36.000Z", "title": "$N$-Laplacian problems with critical Trudinger-Moser nonlinearities", "authors": [ "Yang Yang", "Kanishka Perera" ], "categories": [ "math.AP" ], "abstract": "We prove existence and multiplicity results for a $N$-Laplacian problem with a critical exponential nonlinearity that is a natural analog of the Brezis-Nirenberg problem for the borderline case of the Sobolev inequality. This extends results in the literature for the semilinear case $N = 2$ to all $N \\ge 2$. When $N > 2$ the nonlinear operator $- \\Delta_N$ has no linear eigenspaces and hence this extension requires new abstract critical point theorems that are not based on linear subspaces. We prove new abstract results based on the ${\\mathbb Z}_2$-cohomological index and a related pseudo-index that are applicable here.", "revisions": [ { "version": "v1", "updated": "2014-06-24T14:09:11.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2016-01-03T20:10:36.000Z" } ], "analyses": { "subjects": [ "35J92", "35B33", "58E05" ], "keywords": [ "critical trudinger-moser nonlinearities", "laplacian problem", "abstract critical point theorems", "multiplicity results", "natural analog" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.6242Y" } } }