{ "id": "1406.6168", "version": "v2", "published": "2014-06-24T08:40:21.000Z", "updated": "2014-08-28T09:56:26.000Z", "title": "Total irregularity and $f^t$-irregularity of Jaco Graphs, $J_n(1), n \\in \\Bbb N$", "authors": [ "Johan Kok" ], "comment": "11 pages. Minor typographical errors corrected. To be submitted to the \\emph{Pioneer Journal of Mathematics and Mathematical Sciences.}", "categories": [ "math.CO" ], "abstract": "Total irregularity of a simple undirected graph $G$ is defined to be $irr_t(G) = \\frac{1}{2}\\sum\\limits_{u, v \\in V(G)}|d(u) - d(v)|$. See Abdo and Dimitrov [2]. We allocate the \\emph{Fibonacci weight,} $f_i$ to a vertex $v_j$ of a simple connected graph, if and only if $d(v_j) = i$ and define the \\emph{total fibonaccian irregularity} or $f_t-irregularity$ denoted $firr_t(G)$ for brevity, as: $firr_t(G) = \\sum\\limits_{i=1}^{n-1}\\sum\\limits_{j=i+1}^{n}|f_i - f_j|.$ The concept of an \\emph{edge-joint} is also introduced to be the simple undirected graph obtained from two simple undirected graphs $G$ and $H$ by linking the edge $vu_{v \\in V(G), u \\in V(H)}$. This paper presents results for the undirected underlying graphs of Jaco Graphs, $J_n(1)$. For more on Jaco Graphs $J_n(1)$ see [3]. Finally we pose an open problem with regards to $firr_t^\\pm(G).$", "revisions": [ { "version": "v1", "updated": "2014-06-24T08:40:21.000Z", "comment": "11 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-08-28T09:56:26.000Z" } ], "analyses": { "keywords": [ "jaco graphs", "total irregularity", "simple undirected graph", "open problem", "fibonaccian irregularity" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.6168K" } } }