{ "id": "1406.5456", "version": "v1", "published": "2014-06-20T16:31:30.000Z", "updated": "2014-06-20T16:31:30.000Z", "title": "Extremal functions in de Branges and Euclidean spaces", "authors": [ "Emanuel Carneiro", "Friedrich Littmann" ], "journal": "Adv. Math. 260 (2014), 281-349", "doi": "10.1016/j.aim.2014.04.007", "categories": [ "math.CA" ], "abstract": "In this work we obtain optimal majorants and minorants of exponential type for a wide class of radial functions on $\\mathbb{R}^N$. These extremal functions minimize the $L^1(\\mathbb{R}^N, |x|^{2\\nu + 2 - N}dx)$-distance to the original function, where $\\nu >-1$ is a free parameter. To achieve this result we develop new interpolation tools to solve an associated extremal problem for the exponential function $\\mathcal{F}_{\\lambda}(x) = e^{-\\lambda|x|}$, where $\\lambda >0$, in the general framework of de Branges spaces of entire functions. We then specialize the construction to a particular family of homogeneous de Branges spaces to approach the multidimensional Euclidean case. Finally, we extend the result from the exponential function to a class of subordinated radial functions via integration on the parameter $\\lambda >0$ against suitable measures. Applications of the results presented here include multidimensional versions of Hilbert-type inequalities, extremal one-sided approximations by trigonometric polynomials for a class of even periodic functions and extremal one-sided approximations by polynomials for a class of functions on the sphere $\\mathbb{S}^{N-1}$ with an axis of symmetry.", "revisions": [ { "version": "v1", "updated": "2014-06-20T16:31:30.000Z" } ], "analyses": { "subjects": [ "41A30", "46E22", "41A05", "41A63" ], "keywords": [ "extremal functions", "euclidean spaces", "extremal one-sided approximations", "radial functions", "exponential function" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier", "journal": "Adv. Math." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.5456C" } } }