{ "id": "1406.5345", "version": "v1", "published": "2014-06-20T10:49:07.000Z", "updated": "2014-06-20T10:49:07.000Z", "title": "Certain identities, connection and explicit formulas for the Bernoulli, Euler numbers and Riemann zeta -values", "authors": [ "Semyon Yakubovich" ], "categories": [ "math.CA" ], "abstract": "Various new identities, recurrence relations, integral representations, connection and explicit formulas are established for the Bernoulli, Euler numbers and the values of Riemann's zeta function. To do this, we explore properties of some Sheffer's sequences of polynomials related to the Kontorovich-Lebedev transform.", "revisions": [ { "version": "v1", "updated": "2014-06-20T10:49:07.000Z" } ], "analyses": { "subjects": [ "11B68", "11B73", "11B83", "11M06", "12E10", "33C10", "44A15" ], "keywords": [ "explicit formulas", "euler numbers", "riemann zeta", "identities", "connection" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.5345Y" } } }