{ "id": "1406.4954", "version": "v1", "published": "2014-06-19T06:48:05.000Z", "updated": "2014-06-19T06:48:05.000Z", "title": "Indecomposability of entanglement witnesses constructed from any permutations", "authors": [ "Xiao-Fei Qi", "Jin-Chuan Hou" ], "comment": "11 pages", "categories": [ "quant-ph" ], "abstract": "Let $n\\geq 2$ and $\\Phi_{n,t,\\pi}: M_n({\\mathbb C}) \\rightarrow M_n({\\mathbb C})$ be a linear map defined by $\\Phi_{n,t,\\pi}(A)=(n-t)\\sum_{i=1}^nE_{ii}AE_{ii}+t\\sum_{i=1}^nE_{i,\\pi(i)}AE_{i,\\pi(i)}^\\dag-A$, where $0\\leq t\\leq n$, $E_{ij}$s are the matrix units and $\\pi$ is a non-identity permutation of $(1,2,\\cdots,n)$. Denote by $\\{{ F}_s: s=1,2\\ldots, k\\}$ the set of all minimal cycles of $\\pi$ and $l(\\pi)=\\max\\{\\# { F}_s: s=1,2,\\ldots,k\\}$ the length of $\\pi$. It is shown that the Hermitian matrix $W_{n,t,\\pi}$ induced by $\\Phi_{n,t,\\pi}$ is an indecomposable entanglement witness if and only if $\\pi^2\\not={\\rm id}$ (the identity permutation) and $0