{ "id": "1406.4950", "version": "v1", "published": "2014-06-19T05:45:37.000Z", "updated": "2014-06-19T05:45:37.000Z", "title": "On uniqueness of distribution of a random variable whose independent copies span a subspace in L_p", "authors": [ "S. Astashkin", "F. Sukochev", "D. Zanin" ], "comment": "14 pages, submitted", "categories": [ "math.FA" ], "abstract": "Let 1\\leq p<2 and let L_p=L_p[0,1] be the classical L_p-space of all (classes of) p-integrable functions on [0,1]. It is known that a sequence of independent copies of a mean zero random variable f from L_p spans in L_p a subspace isomorphic to some Orlicz sequence space l_M. We present precise connections between M and f and establish conditions under which the distribution of a random variable f whose independent copies span l_M in L_p is essentially unique.", "revisions": [ { "version": "v1", "updated": "2014-06-19T05:45:37.000Z" } ], "analyses": { "subjects": [ "46E30", "46B20", "46B09" ], "keywords": [ "independent copies span", "distribution", "uniqueness", "orlicz sequence space", "mean zero random variable" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.4950A" } } }