{ "id": "1406.4769", "version": "v2", "published": "2014-06-18T15:35:59.000Z", "updated": "2014-11-14T11:38:34.000Z", "title": "A T(P) theorem for Sobolev spaces on domains", "authors": [ "Martí Prats", "Xavier Tolsa" ], "comment": "35 pages, 6 figures", "categories": [ "math.CA", "math.AP" ], "abstract": "Recently, V. Cruz, J. Mateu and J. Orobitg have proved a T(1) theorem for the Beurling transform in the complex plane. It asserts that given $02$ and a Lipschitz domain $\\Omega\\subset \\mathbb{C}$, the Beurling transform $Bf=- {\\rm p.v.}\\frac1{\\pi z^2}*f$ is bounded in the Sobolev space $W^{s,p}(\\Omega)$ if and only if $B\\chi_\\Omega\\in W^{s,p}(\\Omega)$. In this paper we obtain a generalized version of the former result valid for any $s\\in \\mathbb{N}$ and for a larger family of Calder\\'on-Zygmund operators in any ambient space $\\mathbb{R}^d$ as long as $p>d$. In that case we need to check the boundedness not only over the characteristic function of the domain, but over a finite collection of polynomials restricted to the domain. Finally we find a sufficient condition in terms of Carleson measures for $p\\leq d$. In the particular case $s=1$, this condition is in fact necessary, which yields a complete characterization.", "revisions": [ { "version": "v1", "updated": "2014-06-18T15:35:59.000Z", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-11-14T11:38:34.000Z" } ], "analyses": { "keywords": [ "sobolev space", "beurling transform", "result valid", "calderon-zygmund operators", "lipschitz domain" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.4769P" } } }