{ "id": "1406.4419", "version": "v1", "published": "2014-06-17T16:41:49.000Z", "updated": "2014-06-17T16:41:49.000Z", "title": "The fundamental groupoid as a terminal costack", "authors": [ "Ilia Pirashvili" ], "categories": [ "math.AT" ], "abstract": "Let $X$ be a topological space. We denote by $\\pi_0(X)$ the set of connected components of $X$ and by $\\Pi_1(U)$ the fundamental groupoid. In this paper we prove that for good topological spaces the assignments $U\\mapsto\\pi_0(U)$ and $U\\mapsto\\Pi_1(U)$ are the terminal cosheaf and costack respectively.", "revisions": [ { "version": "v1", "updated": "2014-06-17T16:41:49.000Z" } ], "analyses": { "subjects": [ "55M99" ], "keywords": [ "fundamental groupoid", "terminal costack", "topological space", "terminal cosheaf" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.4419P" } } }