{ "id": "1406.4384", "version": "v1", "published": "2014-06-17T14:34:35.000Z", "updated": "2014-06-17T14:34:35.000Z", "title": "Decidable fragments of the Simple Theory of Types with Infinity and NF", "authors": [ "Anuj Dawar", "Thomas Forster", "Zachiri McKenzie" ], "comment": "19 pages", "categories": [ "math.LO" ], "abstract": "We identify complete fragments of the Simple Theory of Types with Infinity ($\\mathrm{TSTI}$) and Quine's $\\mathrm{NF}$ set theory. We show that $\\mathrm{TSTI}$ decides every sentence $\\phi$ in the language of type theory that is in one of the following forms: (A) $\\phi= \\forall x_1^{r_1} \\cdots \\forall x_k^{r_k} \\exists y_1^{s_1} \\cdots \\exists y_l^{s_l} \\theta$ where the superscripts denote the types of the variables, $s_1 > \\ldots > s_l$ and $\\theta$ is quantifier-free, (B) $\\phi= \\forall x_1^{r_1} \\cdots \\forall x_k^{r_k} \\exists y_1^{s} \\cdots \\exists y_l^{s} \\theta$ where the superscripts denote the types of the variables and $\\theta$ is quantifier-free. This shows that $\\mathrm{NF}$ decides every stratified sentence $\\phi$ in the language of set theory that is in one of the following forms: (A') $\\phi= \\forall x_1 \\cdots \\forall x_k \\exists y_1 \\cdots \\exists y_l \\theta$ where $\\theta$ is quantifier-free and $\\phi$ admits a stratification that assigns distinct values to all of the variable $y_1, \\ldots, y_l$, (B') $\\phi= \\forall x_1 \\cdots \\forall x_k \\exists y_1 \\cdots \\exists y_l \\theta$ where $\\theta$ is quantifier-free and $\\phi$ admits a stratification that assigns the same value to all of the variables $y_1, \\ldots, y_l$.", "revisions": [ { "version": "v1", "updated": "2014-06-17T14:34:35.000Z" } ], "analyses": { "keywords": [ "simple theory", "decidable fragments", "set theory", "quantifier-free", "superscripts denote" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.4384D" } } }