{ "id": "1406.3801", "version": "v1", "published": "2014-06-15T08:29:45.000Z", "updated": "2014-06-15T08:29:45.000Z", "title": "Ramanujan-type Congruences for Overpartitions Modulo 5", "authors": [ "William Y. C. Chen", "Lisa H. Sun", "Rong-Hua Wang", "Li Zhang" ], "comment": "11 pages", "categories": [ "math.CO", "math.NT" ], "abstract": "Let $\\overline{p}(n)$ denote the number of overpartitions of $n$. Hirschhorn and Sellers showed that $\\overline{p}(4n+3)\\equiv 0 \\pmod{8}$ for $n\\geq 0$. They also conjectured that $\\overline{p}(40n+35)\\equiv 0 \\pmod{40}$ for $n\\geq 0$. Chen and Xia proved this conjecture by using the $(p,k)$-parametrization of theta functions given by Alaca, Alaca and Williams. In this paper, we show that $\\overline{p}(5n)\\equiv (-1)^{n}\\overline{p}(4\\cdot 5n) \\pmod{5}$ for $n \\geq 0$ and $\\overline{p}(n)\\equiv (-1)^{n}\\overline{p}(4n)\\pmod{8}$ for $n \\geq 0$ by using the relation of the generating function of $\\overline{p}(5n)$ modulo $5$ found by Treneer and the $2$-adic expansion of the generating function of $\\overline{p}(n)$ due to Mahlburg. As a consequence, we deduce that $\\overline{p}(4^k(40n+35))\\equiv 0 \\pmod{40}$ for $n,k\\geq 0$. Furthermore, applying the Hecke operator on $\\phi(q)^3$ and the fact that $\\phi(q)^3$ is a Hecke eigenform, we obtain an infinite family of congrences $\\overline{p}(4^k \\cdot5\\ell^2n)\\equiv 0 \\pmod{5}$, where $k\\ge 0$ and $\\ell$ is a prime such that $\\ell\\equiv3 \\pmod{5}$ and $\\left(\\frac{-n}{\\ell}\\right)=-1$. Moreover, we show that $\\overline{p}(5^{2}n)\\equiv \\overline{p}(5^{4}n) \\pmod{5}$ for $n \\ge 0$. So we are led to the congruences $\\overline{p}\\big(4^k5^{2i+3}(5n\\pm1)\\big)\\equiv 0 \\pmod{5}$ for $n, k, i\\ge 0$. In this way, we obtain various Ramanujan-type congruences for $\\overline{p}(n)$ modulo $5$ such as $\\overline{p}(45(3n+1))\\equiv 0 \\pmod{5}$ and $\\overline{p}(125(5n\\pm 1))\\equiv 0 \\pmod{5}$ for $n\\geq 0$.", "revisions": [ { "version": "v1", "updated": "2014-06-15T08:29:45.000Z" } ], "analyses": { "subjects": [ "05A17", "11P83" ], "keywords": [ "ramanujan-type congruences", "overpartitions modulo", "generating function", "conjecture", "theta functions" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.3801C" } } }