{ "id": "1406.3768", "version": "v1", "published": "2014-06-14T20:27:33.000Z", "updated": "2014-06-14T20:27:33.000Z", "title": "Some limit results for Markov chains indexed by trees", "authors": [ "Peter Czuppon", "Peter Pfaffelhuber" ], "comment": "12 pages", "categories": [ "math.PR" ], "abstract": "We consider a sequence of Markov chains $(\\mathcal X^n)_{n=1,2,...}$ with $\\mathcal X^n = (X^n_\\sigma)_{\\sigma\\in\\mathcal T}$, indexed by the full binary tree $\\mathcal T = \\mathcal T_0 \\cup \\mathcal T_1 \\cup ...$, where $\\mathcal T_k$ is the $k$th generation of $\\mathcal T$. In addition, let $(\\Sigma_k)_{k=0,1,2,...}$ be a random walk on $\\mathcal T$ with $\\Sigma_k \\in \\mathcal T_k$ and $\\widetilde{\\mathcal R}^n = (\\widetilde R_t^n)_{t\\geq 0}$ with $\\widetilde R_t^n := X_{\\Sigma_{[tn]}}$, arising by observing the Markov chain $\\mathcal X^n$ along the random walk. We present a law of large numbers concerning the empirical measure process $\\widetilde{\\mathcal Z}^n = (\\widetilde Z_t^n)_{t\\geq 0}$ where $\\widetilde{Z}_t^n = \\sum_{\\sigma\\in\\mathcal T_{[tn]}} \\delta_{X_\\sigma^n}$ as $n\\to\\infty$. Precisely, we show that if $\\widetilde{\\mathcal R}^n \\to \\mathcal R$ for some Feller process $\\mathcal R = (R_t)_{t\\geq 0}$ with deterministic initial condition, then $\\widetilde{\\mathcal Z}^n \\to \\mathcal Z$ with $Z_t = \\delta_{\\mathcal L(R_t)}$.", "revisions": [ { "version": "v1", "updated": "2014-06-14T20:27:33.000Z" } ], "analyses": { "subjects": [ "60F15", "60F05" ], "keywords": [ "markov chains", "limit results", "random walk", "full binary tree", "deterministic initial condition" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.3768C" } } }