{ "id": "1406.3698", "version": "v2", "published": "2014-06-14T07:53:12.000Z", "updated": "2016-01-16T18:25:55.000Z", "title": "On an asymptotic behavior of the divisor function $τ(n)$", "authors": [ "Tigran Hakobyan" ], "comment": "15 pages", "categories": [ "math.NT" ], "abstract": "For $\\mu>0$ we study an asymptotic behavior of the sequence defined as $$T_{n}(\\mu)=\\frac{max_{1\\leq m \\leq {n^{\\frac{1}{\\mu}}}}\\{\\tau (n + m)\\}}{\\tau(n)},\\ n=1,2,...$$ where $\\tau(n)$ denotes the number of natural divisors of the given $n\\in \\mathbb{N}$. The motivation of this observation is to explore whether $\\tau$ function oscillates rapidly in small neighborhoods of natural numbers.", "revisions": [ { "version": "v1", "updated": "2014-06-14T07:53:12.000Z", "abstract": "In this paper we study an asymptotic behavior of the sequence defined as $T_{n}(\\mu)=\\frac{max_{1\\leq m \\leq \\sqrt[\\mu]{n}}\\{\\tau (n + m)\\}}{\\tau(n)}$ where $\\mu>0$ is fixed and $\\tau(n)$ denotes the number of natural divisors of the given $n\\in N$.", "comment": "10 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2016-01-16T18:25:55.000Z" } ], "analyses": { "keywords": [ "asymptotic behavior", "divisor function", "natural divisors" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.3698H" } } }