{ "id": "1406.3694", "version": "v1", "published": "2014-06-14T07:07:17.000Z", "updated": "2014-06-14T07:07:17.000Z", "title": "Well-posedness for the Euler-Nernst-Planck-Possion system in Besov spaces", "authors": [ "Zeng Zhang", "Zhaoyang Yin" ], "categories": [ "math.AP" ], "abstract": "In this paper, we mainly study the Cauchy problem of the Euler-Nernst-Planck-Possion ($ENPP$) system. We first establish local well-posedness for the Cauchy problem of the $ENPP$ system in Besov spaces. Then we present a blow-up criterion of solutions to the $ENPP$ system. Moreover, we prove that the solutions of the Navier-Stokes-Nernst-Planck-Possion system converge to the solutions of the $ENPP$ system as the viscosity $\\nu$ goes to zero, and that the convergence rate is at least of order ${\\nu}^\\frac{1}{2}$.", "revisions": [ { "version": "v1", "updated": "2014-06-14T07:07:17.000Z" } ], "analyses": { "keywords": [ "besov spaces", "euler-nernst-planck-possion system", "cauchy problem", "navier-stokes-nernst-planck-possion system converge", "first establish local well-posedness" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.3694Z" } } }