{ "id": "1406.3691", "version": "v1", "published": "2014-06-14T06:55:54.000Z", "updated": "2014-06-14T06:55:54.000Z", "title": "Well-posedness for the FENE dumbbell model of polymetric flows in Besov spaces", "authors": [ "Wei Luo", "Zhaoyang Yin" ], "categories": [ "math.AP" ], "abstract": "In this paper we mainly investigate the Cauchy problem of the finite extensible nonlinear elastic (FENE) dumbbell model with dimension $d\\geq2$. We first proved the local well-posedness for the FENE model in Besov spaces by using the Littlewood-Paley theory. Then by an accurate estimate we get a blow-up criterion. Moreover, if the initial data is perturbation around equilibrium, we obtain a global existence result. Our obtained results generalize recent results in [8].", "revisions": [ { "version": "v1", "updated": "2014-06-14T06:55:54.000Z" } ], "analyses": { "keywords": [ "fene dumbbell model", "besov spaces", "polymetric flows", "global existence result", "finite extensible nonlinear elastic" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.3691L" } } }