{ "id": "1406.3108", "version": "v2", "published": "2014-06-12T03:18:37.000Z", "updated": "2014-09-27T18:53:17.000Z", "title": "Hessian Recovery for Finite Element Methods", "authors": [ "Hailong Guo", "Zhimin Zhang", "Ren Zhao" ], "categories": [ "math.NA" ], "abstract": "In this article, we propose and analyze an effective Hessian recovery strategy for the Lagrangian finite element of arbitrary order $k$. We prove that the proposed Hessian recovery preserves polynomials of degree $k+1$ on general unstructured meshes and superconverges at rate $O(h^k)$ on mildly structured meshes. In addition, the method preserves polynomials of degree $k+2$ on translation invariant meshes and produces a symmetric Hessian matrix when the sampling points for recovery are selected with symmetry. Numerical examples are presented to support our theoretical results.", "revisions": [ { "version": "v1", "updated": "2014-06-12T03:18:37.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2014-09-27T18:53:17.000Z" } ], "analyses": { "keywords": [ "finite element methods", "hessian recovery preserves polynomials", "method preserves polynomials", "lagrangian finite element", "symmetric hessian matrix" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.3108G" } } }