{ "id": "1406.2947", "version": "v2", "published": "2014-06-11T16:05:30.000Z", "updated": "2014-06-12T03:51:06.000Z", "title": "Analytical solution of the weighted Fermat-Torricelli problem for convex quadrilaterals in the Euclidean plane: The case of two pairs of equal weights", "authors": [ "Anastasios N. Zachos" ], "comment": "13 pages", "categories": [ "math.OC" ], "abstract": "The weighted Fermat-Torricelli problem for four non-collinear points in R^2 states that: Given four non-collinear points A_1, A_2, A_3,A_4 and a positive real number (weight) B_i which correspond to each point A_i, for i = 1, 2, 3, 4, find a fifth point such that the sum of the weighted distances to these four points is min- imized. We present an analytical solution for the weighted Fermat-Torricelli problem for convex quadrilaterals in R2 for the following two cases: (a) B_1 = B_2 and B_3 = B_4, for B1 > B4 and (b) B_1 = B_3 and B_2 = B_4.", "revisions": [ { "version": "v2", "updated": "2014-06-12T03:51:06.000Z" } ], "analyses": { "subjects": [ "51E12", "52A10", "51E10" ], "keywords": [ "weighted fermat-torricelli problem", "convex quadrilaterals", "analytical solution", "euclidean plane", "equal weights" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.2947Z" } } }