{ "id": "1406.2351", "version": "v1", "published": "2014-06-09T20:49:34.000Z", "updated": "2014-06-09T20:49:34.000Z", "title": "Stochastic Calculus for Markov Processes Associated with Semi-Dirichlet Forms", "authors": [ "Chuan-Zhong Chen", "Li Ma", "Wei Sun" ], "categories": [ "math.PR" ], "abstract": "Let $(\\mathcal{E},D(\\mathcal{E}))$ be a quasi-regular semi-Dirichlet form and $(X_t)_{t\\geq0}$ be the associated Markov process. For $u\\in D(\\mathcal{E})_{loc}$, denote $A_t^{[u]}:=\\tilde{u}(X_{t})-\\tilde{u}(X_{0})$ and $F^{[u]}_t:=\\sum_{01\\}}$, where $\\tilde{u}$ is a quasi-continuous version of $u$. We show that there exist a unique locally square integrable martingale additive functional $Y^{[u]}$ and a unique continuous local additive functional $Z^{[u]}$ of zero quadratic variation such that $$A_t^{[u]}=Y_t^{[u]}+Z_t^{[u]}+F_t^{[u]}.$$ Further, we define the stochastic integral $\\int_0^t\\tilde v(X_{s-})dA_s^{[u]}$ for $v\\in D(\\mathcal{E})_{loc}$ and derive the related It\\^{o}'s formula.", "revisions": [ { "version": "v1", "updated": "2014-06-09T20:49:34.000Z" } ], "analyses": { "subjects": [ "31C25", "60J25" ], "keywords": [ "semi-dirichlet form", "markov processes", "stochastic calculus", "locally square integrable martingale", "continuous local additive functional" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.2351C" } } }