{ "id": "1406.2281", "version": "v2", "published": "2014-06-09T18:55:09.000Z", "updated": "2014-11-26T21:20:12.000Z", "title": "A PDE approach to fractional diffusion: a posteriori error analysis", "authors": [ "Long Chen", "Ricardo H. Nochetto", "Enrique Otárola", "Abner J. Salgado" ], "categories": [ "math.NA" ], "abstract": "We derive a computable a posteriori error estimator for the $\\alpha$-harmonic extension problem, which localizes the fractional powers of elliptic operators supplemented with Dirichlet boundary conditions. Our a posteriori error estimator relies on the solution of small discrete problems on anisotropic cylindrical stars. It exhibits built-in flux equilibration and is equivalent to the energy error up to data oscillation, under suitable assumptions. We design a simple adaptive algorithm and present numerical experiments which reveal a competitive performance.", "revisions": [ { "version": "v1", "updated": "2014-06-09T18:55:09.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2014-11-26T21:20:12.000Z" } ], "analyses": { "subjects": [ "35J70", "65N12", "65N30", "65N50" ], "keywords": [ "posteriori error analysis", "fractional diffusion", "pde approach", "posteriori error estimator relies", "dirichlet boundary conditions" ], "publication": { "doi": "10.1016/j.jcp.2015.01.001", "journal": "Journal of Computational Physics", "year": 2015, "month": "Jul", "volume": 293, "pages": 339 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015JCoPh.293..339C" } } }