{ "id": "1406.1887", "version": "v2", "published": "2014-06-07T11:32:29.000Z", "updated": "2015-07-06T13:23:14.000Z", "title": "Supersaturation and stability for forbidden subposet problems", "authors": [ "Balazs Patkos" ], "categories": [ "math.CO" ], "abstract": "We address a supersaturation problem in the context of forbidden subposets. A family $\\mathcal{F}$ of sets is said to contain the poset $P$ if there is an injection $i:P \\rightarrow \\mathcal{F}$ such that $p \\le_P q$ implies $i(p) \\subset i (q)$. The poset on four elements $a,b,c,d$ with $a,b \\le c,d$ is called butterfly. The maximum size of a family $\\mathcal{F} \\subseteq 2^{[n]}$ that does not contain a butterfly is $\\Sigma(n,2)=\\binom{n}{\\lfloor n/2 \\rfloor}+\\binom{n}{\\lfloor n/2 \\rfloor+1}$ as proved by De Bonis, Katona, and Swanepoel. We prove that if $\\mathcal{F} \\subseteq 2^{[n]}$ contains $\\Sigma(n,2)+E$ sets, then it has to contain at least $(1-o(1))E(\\lceil n/2 \\rceil +1)\\binom{\\lceil n/2\\rceil}{2}$ copies of the butterfly provided $E\\le 2^{n^{1-\\varepsilon}}$ for some positive $\\varepsilon$. We show by a construction that this is asymptotically tight and for small values of $E$ we show that the minimum number of butterflies contained in $\\mathcal{F}$ is exactly $E(\\lceil n/2 \\rceil +1)\\binom{\\lceil n/2\\rceil}{2}$.", "revisions": [ { "version": "v1", "updated": "2014-06-07T11:32:29.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2015-07-06T13:23:14.000Z" } ], "analyses": { "keywords": [ "forbidden subposet problems", "supersaturation problem", "small values", "minimum number", "construction" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.1887P" } } }