{ "id": "1406.1702", "version": "v1", "published": "2014-06-06T15:13:11.000Z", "updated": "2014-06-06T15:13:11.000Z", "title": "Finite primitive groups and regular orbits of group elements", "authors": [ "Simon Guest", "Pablo Spiga" ], "comment": "21 pages", "categories": [ "math.GR", "math.CO" ], "abstract": "We prove that if $G$ is a finite primitive permutation group and if $g$ is an element of $G$, then either $g$ has a cycle of length equal to its order, or for some $r$, $m$ and $k$, the group $G \\leq \\mathrm{Sym}(m) \\textrm{wr} \\mathrm{Sym}(r)$ preserves the product structure of $r$ direct copies of the natural action of $\\mathrm{Sym}(m)$ on $k$-sets. This gives an answer to a question of Siemons and Zalesski and a solution to a conjecture of Giudici, Praeger and the second author.", "revisions": [ { "version": "v1", "updated": "2014-06-06T15:13:11.000Z" } ], "analyses": { "keywords": [ "finite primitive groups", "regular orbits", "group elements", "finite primitive permutation group", "length equal" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.1702G" } } }