{ "id": "1406.1453", "version": "v1", "published": "2014-06-05T17:29:16.000Z", "updated": "2014-06-05T17:29:16.000Z", "title": "On Lusztig's $q$-analogues of all weight multiplicities of a representation", "authors": [ "Dmitri I. Panyushev" ], "comment": "15 pages", "categories": [ "math.RT" ], "abstract": "Let $\\mathfrak g$ be a complex semisimple Lie algebra. We obtain new properties of the $q$-analogue of weight multiplicities in finite-dimensional representations of $\\mathfrak g$. In particular, it is proved that certain weighted sum of $q$-analogues of all weights of a representation $V$ equals the $q$-analogue of the zero weight multiplicity in the reducible representation $V\\otimes V^*$. This also provides another formula for the $\\mathbb Z[q]$-valued symmetric bilinear form on the character ring of $\\mathfrak g$ that was introduced by R.Gupta (Brylinski) in 1987.", "revisions": [ { "version": "v1", "updated": "2014-06-05T17:29:16.000Z" } ], "analyses": { "subjects": [ "17B10", "17B20", "20G10" ], "keywords": [ "complex semisimple lie algebra", "zero weight multiplicity", "valued symmetric bilinear form", "finite-dimensional representations", "properties" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.1453P" } } }