{ "id": "1406.1264", "version": "v1", "published": "2014-06-05T04:36:13.000Z", "updated": "2014-06-05T04:36:13.000Z", "title": "On the connectedness of subcomplexes of a disk complex", "authors": [ "Jung Hoon Lee" ], "comment": "11 pages, 4 figures", "categories": [ "math.GT" ], "abstract": "For a boundary-reducible $3$-manifold $M$ with $\\partial M$ a genus $g$ surface, we show that if $M$ admits a genus $g+1$ Heegaard surface $S$, then the disk complex of $S$ is simply connected. Also we consider the connectedness of the complex of reducing spheres. We investigate the intersection of two reducing spheres for a genus three Heegaard splitting of $\\mathrm{(torus)} \\times I$.", "revisions": [ { "version": "v1", "updated": "2014-06-05T04:36:13.000Z" } ], "analyses": { "subjects": [ "57M50" ], "keywords": [ "disk complex", "connectedness", "subcomplexes" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.1264L" } } }