{ "id": "1406.1130", "version": "v1", "published": "2014-06-04T18:11:47.000Z", "updated": "2014-06-04T18:11:47.000Z", "title": "Free amalgamation and automorphism groups", "authors": [ "Andreas Baudisch" ], "categories": [ "math.LO" ], "abstract": "Let L be a countable elementary language, N be a Fraisse limit. We consider free amalgamation for L-structures where L is arbitrary. If free amalgamation for finitely generated substructures exits in N, then it is a stationary independece relation in the sense of K.Tent and M.Ziegler [TZ12b]. Therefore Aut(N) is universal for Aut(M) for all substructures M of N. This follows by a result of I.M\\\"uller [Mue13] We show that c-nilpotent graded Lie algebras over a finite field and c-nilpotent groups of exponent p (c < p) with extra predicates for a central Lazard series provide examples. We replace the proof in [Bau04] of the amalgamation of c-nilpotent graded Lie algebras over a field by a correct one.", "revisions": [ { "version": "v1", "updated": "2014-06-04T18:11:47.000Z" } ], "analyses": { "subjects": [ "03C45" ], "keywords": [ "free amalgamation", "automorphism groups", "c-nilpotent graded lie algebras", "stationary independece relation", "central lazard series" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.1130B" } } }