{ "id": "1406.1098", "version": "v1", "published": "2014-06-04T16:28:40.000Z", "updated": "2014-06-04T16:28:40.000Z", "title": "Bessenrodt-Stanley polynomials and the octahedron recurrence", "authors": [ "Philippe Di Francesco" ], "comment": "28 pages, 42 figures", "categories": [ "math.CO", "math-ph", "math.MP" ], "abstract": "We show that a family of multivariate polynomials recently introduced by Bessenrodt and Stanley can be expressed as solution of the octahedron recurrence with suitable initial data. This leads to generalizations and explicit expressions as path or dimer partition functions.", "revisions": [ { "version": "v1", "updated": "2014-06-04T16:28:40.000Z" } ], "analyses": { "subjects": [ "05C22", "05E10", "05A15", "05A30", "82B20" ], "keywords": [ "octahedron recurrence", "bessenrodt-stanley polynomials", "dimer partition functions", "multivariate polynomials", "explicit expressions" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.1098D" } } }