{ "id": "1406.0606", "version": "v1", "published": "2014-06-03T07:38:46.000Z", "updated": "2014-06-03T07:38:46.000Z", "title": "Induced Cycles in Graphs", "authors": [ "Michael A. Henning", "Felix Joos", "Christian Löwenstein", "Thomas Sasse" ], "comment": "17 pages", "categories": [ "math.CO" ], "abstract": "The maximum cardinality of an induced $2$-regular subgraph of a graph $G$ is denoted by $c_{\\rm ind}(G)$. We prove that if $G$ is an $r$-regular graph of order $n$, then $c_{\\rm ind}(G) \\geq \\frac{n}{2(r-1)} + \\frac{1}{(r-1)(r-2)}$ and we prove that if $G$ is a cubic claw-free graph on order $n$, then $c_{\\rm ind}(G) > 13n/20$ and this bound is asymptotically best possible.", "revisions": [ { "version": "v1", "updated": "2014-06-03T07:38:46.000Z" } ], "analyses": { "keywords": [ "induced cycles", "cubic claw-free graph", "regular graph", "regular subgraph" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.0606H" } } }