{ "id": "1406.0465", "version": "v1", "published": "2014-05-30T13:15:53.000Z", "updated": "2014-05-30T13:15:53.000Z", "title": "Convenient descriptions of weight functions in time-frequency analysis", "authors": [ "Carmen Fernandez", "Antonio Galbis", "Joachim Toft" ], "comment": "8 pages", "categories": [ "math.FA" ], "abstract": "Let $v$ be a submultiplicative weight. Then we prove that $v$ satisfies GRS-condition, if and only if $v\\cdot e^{-\\ep |\\cdo |}$ is bounded for every positive $\\ep$. We use this equivalence to establish identification properties between weighted Lebesgue spaces, and between certain modulation spaces and Gelfand-Shilov spaces.", "revisions": [ { "version": "v1", "updated": "2014-05-30T13:15:53.000Z" } ], "analyses": { "keywords": [ "weight functions", "time-frequency analysis", "convenient descriptions", "gelfand-shilov spaces", "satisfies grs-condition" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.0465F" } } }