{ "id": "1406.0107", "version": "v1", "published": "2014-05-31T20:09:34.000Z", "updated": "2014-05-31T20:09:34.000Z", "title": "Long paths in the distance graph over large subsets of vector spaces over finite fields", "authors": [ "M. Bennett", "J. Chapman", "D. Covert", "D. Hart", "A. Iosevich", "J. Pakianathan" ], "categories": [ "math.CO", "math.CA", "math.NT" ], "abstract": "Let $E \\subset {\\Bbb F}_q^d$, the $d$-dimensional vector space over a finite field with $q$ elements. Construct a graph, called the distance graph of $E$, by letting the vertices be the elements of $E$ and connect a pair of vertices corresponding to vectors $x,y \\in E$ by an edge if $||x-y||={(x_1-y_1)}^2+\\dots+{(x_d-y_d)}^2=1$. We shall prove that if the size of $E$ is sufficiently large, then the distance graph of $E$ contains long non-overlapping paths and vertices of high degree.", "revisions": [ { "version": "v1", "updated": "2014-05-31T20:09:34.000Z" } ], "analyses": { "subjects": [ "52C10" ], "keywords": [ "distance graph", "finite field", "large subsets", "long paths", "dimensional vector space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.0107B" } } }