{ "id": "1405.7784", "version": "v1", "published": "2014-05-30T06:57:54.000Z", "updated": "2014-05-30T06:57:54.000Z", "title": "Indecomposable continua in exponential dynamics-Hausdorff dimension", "authors": [ "Lukasz Pawelec", "Anna Zdunik" ], "categories": [ "math.DS" ], "abstract": "We study some forward invariant sets appearing in the dynamics of the exponential family. We prove that the Hausdorff dimension of the sets under consideration is not larger than $1$. This allows us to prove, as a consequence, a result for some dynamically defined indecomposable continua which appear in the dynamics of the exponential family. We prove that the Hausdorff dimension of these continua is equal to one.", "revisions": [ { "version": "v1", "updated": "2014-05-30T06:57:54.000Z" } ], "analyses": { "subjects": [ "37F35", "37B45" ], "keywords": [ "exponential dynamics-hausdorff dimension", "indecomposable continua", "exponential family", "consequence", "forward invariant sets appearing" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.7784P" } } }