{ "id": "1405.7490", "version": "v1", "published": "2014-05-29T08:25:13.000Z", "updated": "2014-05-29T08:25:13.000Z", "title": "Finite temperature reservoir engineering and entanglement dynamics", "authors": [ "S. Fedortchenko", "A. Keller", "T. Coudreau", "P. Milman" ], "categories": [ "quant-ph" ], "abstract": "We propose experimental methods to engineer reservoirs at arbitrary temperature which are feasible with current technology. Our results generalize to mixed states the possibility of quantum state engineering through controlled decoherence. Finite temperature engineered reservoirs can lead to the experimental observation of thermal entanglement --the appearance and increase of entanglement with temperature-- to the study of the dependence of finite time disentanglement and revival with temperature, quantum thermodynamical effects, among many other applications, enlarging the comprehension of temperature dependent entanglement properties.", "revisions": [ { "version": "v1", "updated": "2014-05-29T08:25:13.000Z" } ], "analyses": { "subjects": [ "03.65.Yz", "03.65.Ud", "03.67.Bg" ], "keywords": [ "finite temperature reservoir engineering", "entanglement dynamics", "temperature dependent entanglement properties", "finite temperature engineered reservoirs", "finite time disentanglement" ], "tags": [ "journal article" ], "publication": { "doi": "10.1103/PhysRevA.90.042103", "journal": "Physical Review A", "year": 2014, "month": "Oct", "volume": 90, "number": 4, "pages": "042103" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014PhRvA..90d2103F" } } }