{ "id": "1405.7330", "version": "v2", "published": "2014-05-28T18:42:30.000Z", "updated": "2015-02-08T14:59:33.000Z", "title": "On nonlinear Schrödinger equations with almost periodic initial data", "authors": [ "Tadahiro Oh" ], "comment": "18 pages. References updated. To appear in SIAM J. Math. Anal", "categories": [ "math.AP" ], "abstract": "We consider the Cauchy problem of nonlinear Schr\\\"odinger equations (NLS) with almost periodic functions as initial data. We first prove that, given a frequency set $\\pmb{\\omega} =\\{\\omega_j\\}_{j = 1}^\\infty$, NLS is local well-posed in the algebra $\\mathcal{A}_{\\pmb{\\omega}}(\\mathbb R)$ of almost periodic functions with absolutely convergent Fourier series. Then, we prove a finite time blowup result for NLS with a nonlinearity $|u|^p$, $p \\in 2\\mathbb{N}$. This elementary argument presents the first instance of finite time blowup solutions to NLS with generic almost periodic initial data.", "revisions": [ { "version": "v1", "updated": "2014-05-28T18:42:30.000Z", "abstract": "We consider the Cauchy problem of nonlinear Schr\\\"odinger equations (NLS) with almost periodic functions as initial data. We first prove that, given a frequency set $\\pmb{\\omega} =\\{ \\omega_j\\}_{j = 1}^\\infty$, NLS is local well-posed in the algebra $\\mathcal{A}_{\\pmb{\\omega}}(\\mathbb R)$ of almost periodic functions with absolutely convergent Fourier series. Then, we prove a finite time blowup result for NLS with a nonlinearity $|u|^p$, $p \\in 2\\mathbb{N}$. This elementary argument presents the first instance of finite time blowup solutions to NLS with generic almost periodic initial data.", "comment": "18 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-02-08T14:59:33.000Z" } ], "analyses": { "keywords": [ "periodic initial data", "nonlinear schrödinger equations", "finite time blowup solutions", "finite time blowup result", "periodic functions" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1405.7330O" } } }